129 research outputs found

    Full band gap for surface acoustic waves in a piezoelectric phononic crystal

    No full text
    International audienceA plane-wave-expansion method suited to the analysis of surface-acoustic-wave propagation in two-dimensional piezoelectric phononic crystals is described. The surface modes of a square-lattice Y-cut lithium niobate phononic crystal with circular void inclusions with a filling fraction of 63% are identified. It is found that a large full band gap with a fractional bandwidth of 34% exists for surface acoustic waves of any polarization and incidence, coincidentally with the full band gap for bulk waves propagating in the plane of the surface. The excitation of surface acoustic waves by interdigital transducers is discussed

    Annular interdigital transducer focuses piezoelectric surface waves to a single point

    Full text link
    We propose and demonstrate experimentally the concept of the annular interdigital transducer that focuses acoustic waves on the surface of a piezoelectric material to a single, diffraction-limited, spot. The shape of the transducing fingers follows the wave surface. Experiments conducted on lithium niobate substrates evidence that the generated surface waves converge to the center of the transducer, producing a spot that shows a large concentration of acoustic energy. This concept is of practical significance to design new intense microacoustic sources, for instance for enhanced acouto-optical interactions

    Interaction of waveguide and localized modes in a phononic crystal

    No full text
    International audienceThe transmission properties ofphononic crystal waveguides with grafted stub resonators were measured. The phononic crystal consists of a two-dimensional periodical array ofsteel rods immersed in water. Waveguides for acoustic waves are created by removing a line defect and stubs are formed by removing rods from the sidewalls of the waveguide. Depending on the stub geometry, definite wavelengths are reflected from the stub creating a one-dimensional bandgap within the waveguide transmission spectrum, the bandwidth ofwhich can be controlled by arranging a proper sequence ofstubs. These effects are interpreted as the interaction ofpropagating waveguide modes with localized stub resonances

    Experimental study of guiding and filtering of acoustic waves in a two dimensional ultrasonic crystal

    No full text
    International audienceWe present a combined experimental and theoretical study of the guiding, bending and filtering of acoustic waves in an ultrasonic crystal. The crystal consists of a two-dimensional periodical array of steel rods immersed in water, for wich a complete acoustic band gap extending from 240 to 325 kHz is found experimentally. Waveguides for acoustic waves are further created by removing a line defect, on which stubs can be added by removing rods from the side-walls of the waveguide. Full transmission is observed for a one-period-wide straight waveguide within the full-band-gap of the perfect phononic crystal, i.e. for a waveguide aperture smaller than one acoustic wavelength. Waveguiding over a wide frequency range is also obtained for a one-period-wide waveguide with two sharp 90 bends. Finite-difference time-domain computations are found to be in good agreement with the measurements in all experimental configurations

    Electroplated Ni mask for plasma etching of submicron-sized features in LiNbO3

    No full text
    International audienceWe here report on the fabrication of electroplated nickel (Ni) masks for dry etching of sub-micron patterns in lithium niobate (LiNbO3). This process allows obtaining 350-nm thick Ni masks defining high air filling fraction holey arrays (e.g. openings of 1800 nm in diameter with inter-hole spacing of 300 nm, or 330 nm diameter holes spaced by 440 nm). The mask profile is perfectly vertical (angle ≈ 90°). The obtained metallic masks are used to realise photonic and phononic crystals. High aspect ratio and dense arrays of holey patterns were defined and transferred into LiNbO3 through RIE (Reactive Ionic Etching) in sulphur hexafluoride (SF6) chemistry. Nanometric holes exhibiting sidewall slope angles of the order of 60° have in this way been etched in LiNbO3. The LiNbO3/Ni selectivity is close to 6 and the etch rate around 6 nm/min

    Scattering of surface acoustic waves by a phononic crystal revealed by heterodyne interferometry

    Get PDF
    Surface acoustic wave propagation within a two-dimensional phononic band gapstructure has been studied using a heterodyne laser interferometer.Acoustic waves are launched by interdigital transducers towards a square lattice of holes etched in a piezoelectric medium. Interferometer measurements performed at frequencies lying below, within, and above the expected band gap frequency range provide direct information of the wave interaction with the phononic crystal, revealing anisotropic scattering into higher diffraction orders depending on the apparent grating pitch at the boundary between the phononic crystal and free surface. Furthermore, the measurements also confirm the existence of an elastic band gap, in accordance with previous electrical measurements and theoretical predictions.Peer reviewe

    Dual phononic and photonic band gaps in a periodic array of pillars deposited on a thin plate

    Get PDF
    We study theoretically the simultaneous existence of phononic and photonic band gaps in a periodic array of silicon pillars deposited on a homogeneous thin silica plate. Several lattices, namely, square, triangular, and honeycomb are investigated for a wide range of geometrical parameters. We discuss the most suitable cases for dual phononic-photonic band gaps, especially in comparison to the more conventional structures constituted by a periodic array of holes in a membrane

    Towards Nonlinear Photonic Wires in Z-cut LiNbO3

    Get PDF
    International audienceUsing a modified Proton Exchange process we have realized Photonic Wires in X-cut LiNbO3. They exhibit highly confined mode, low propagation losses, low strain induced polarization coupling and no reduction of the nonlinear properties. We are now transferring this technique to Z-cut LiNbO3 in order to realize very efficient nonlinear devices in PPLN
    • 

    corecore